第二节 气候变化的因素

一、太阳辐射的变化


  气候的形成和变化受多种因子的影响和制约。太阳辐射和宇宙-地球物理因子都是通过大气和下垫面来影响气候变化的。人类活动既能影响大气和下垫面从而使气候发生变化,又能直接影响气候。在大气和下垫面间,人类活动和大气及下垫面间,又相互影响、相互制约,这样形成重叠的内部和外部的反馈关系,从而使同一来源的太阳辐射影响不断地来回传递、组合分化和发展。在这种长期的影响传递过程中,太阳又出现许多新变动,它们对大气的影响与原有的变动所产生的影响叠加起来,交错结合,以多种形式表现出来,使地球有史以来,气候的变化非常复杂。

一、太阳辐射的变化

太阳辐射是气候形成的最主要因素。气候的变迁与到达地表的太阳辐射能的变化关系至为密切,引起太阳辐射能变化的条件是多方面的。 

(一)地球轨道因素的改变

地球在自己的公转轨道上,接受太阳辐射能。而地球公转轨道的三个因素:偏心率、地轴倾角和春分点的位置都以一定的周期变动着,这就导致地球上所受到的天文辐射发生变动,引起气候变迁。

1.地球轨道偏心率的变化

由第六章所述,到达地球表面单位面积上的天文辐射强度是与日地距离(b)的平方成反比的,地球绕太阳公转轨道是一个椭圆形,现在这个椭圆形的偏心率( e)约为0. 016。目前北半球冬季位于近日点附近,因此北半球冬半年比较短(从秋分至春分,比夏半年短7.5日),但偏心率是在0.00—0.06之间变动的,其周期约为96 000年。以目前情况而论,地球在近日点时所获得的天文辐射量(不考虑其它条件的影响)较现在远日点的辐射量约大1/15,当偏心率e值为极大时,则此差异就成为1/3。如果冬季在远日点,夏季在近日点,则冬季长而冷,夏季热而短,使一年之内冷热差异非常大。这种变化情况在南北半球是相反的。

2.地轴倾斜度的变化

地轴倾斜(即赤道面与黄道面的夹角,又称黄赤交角)是产生四季的原因。由于地球轨道平面在空间有变动,所以地轴对于这个平面的倾斜度(ε)也在变动。现在地轴倾斜度是23.44°,最大时可达24.24°,最小时为22.1°,变动周期约40000年。这个变动使得夏季太阳直射达到的极限纬度(北回归线)和冬季极夜达到的极限纬度(北极圈)发生变动(图8·7)。

 

当倾斜度增加时,高纬度的年辐射量要增加,赤道地区的年辐射量会减少。例如当地轴倾斜度增大时,在极地年辐射量增加4.02%,而在赤道却减少0.35%。可见地轴倾斜度的变化对气候的影响在高纬度比低纬度大得多。此外,倾斜度愈大,地球冬夏接受的太阳辐射量差值就愈大,特别是在高纬度地区必然是冬寒夏热,气温年较差增大;相反,当倾斜度小时,则冬暖夏凉,气温年较差减小。夏凉最有利于冰川的发展。

3.春分点的移动

春分点沿黄道向西缓慢移动,大约每21000年,春分点绕地球轨道一周。春分点位置变动的结果,引起四季开始时间的移动和近日点与远日点的变化。地球近日点所在季节的变化,每70年推迟1天。大约在1万年前,北半球在冬季是处于远日点的位置(现在是近日点),那时北半球冬季比现在要更冷,南半球则相反。

上面三个轨道要素的不同周期的变化,是同时对气候发生影响的。米兰柯维奇(M.M.Lankovitch)曾综合这三者的作用计算出65°N纬度上夏季太阳辐射量在60万年内的变化,并用相对纬度来表示。例如,23万年前在65°N上的太阳辐射量和现在77°N上的一样,而在13万年前又和现在59°N上的一样。他认为当夏季温度降低约4—5℃,冬季反而略有升高的年份,冬天降雪较多,而到夏天雪还未来得及融化时,冬天又接着到来,这样反复进行,就会形成冰期。他还绘制成65°N纬度上夏季辐射量在60万年内的变化(用相对纬度表示)图,并在图上标出第四纪冰期中历次亚冰期出现的时期(图略)。近人按米兰柯维奇的思路,利用大型电子计算机重新计算在距今一百万年以前至一百万年以后65°N的相对纬度(图8·8),图中相对纬度在68°N以上时涂黑,表示冰期,并标出过去定出的冰期。其计算结果大体上对过去第四纪中几个著名的冰期均有明显的反映。

8·8中还给出今后100万年由于太阳辐射量的变化还将出现的多次亚冰期和亚间冰期。气候变化受多种因子的制约,这仅是因地球轨道因素改变而引起的太阳辐射量变化的一个值得参考的因子。

 

(二)火山活动引起大气透明度的变化

到达地表的太阳辐射的强弱要受大气透明度的影响。火山活动对大气透明度的影响最大,强火山爆发喷出的火山尘和硫酸气溶胶能喷入平流层,由于不会受雨水冲刷跌落,它们能强烈地反射和散射太阳辐射,削弱到达地面的直接辐射。据分析火山尘在高空停留的时间一般只有几个月,而硫酸气溶胶则可形成火山云在平流层飘浮数年,能长时间对地面产生净冷却效应。据历史记载18154月初Tambora火山(8.25°S118.0°E)爆发时,500km内有三天不见天日,各方面估计喷出的固体物质可达100—300km3。大量浓烟云长期环绕平流层漂浮,显著减弱太阳辐射,欧美各国在1816年普遍出现了无复之年。据Bryson1977)估计,当年整个北半球中纬度气温平均比常年偏低1℃左右。在英格兰夏季气温偏低3℃,在加拿大6月即开始下雪。再从我国华东沿海各省近500年历史气候资料中可见,在1817年六月廿九日(阳历811日)赣北彭泽(29.9°N116.0°E)见雪,木棉多冻伤。皖南东至县(30.1°N117.0°E)在同年七月二日(阳历814日)降雨雪,平地寸许。在我国中部夏季有两处以上出现霜雪记载的这类严重冷夏在1500—1865年间竟有35年。这说明六月雪是确有其事的,它们绝大多数出现在大火山爆发后的两年间。

20世纪以来,火山强烈喷发后,太阳直接辐射(Q)的减弱有实测记录可稽。例如:①SantaMaria火山(14. 8°N 91. 6°W1902年) 1903Q1902年下降15%;155. 2°W1912年),19121913Q下降11%;③StHelen火山(46. 2°N122. 2°W1980年)1980年我国5Q下降15%;④ElChicho'n火山(17.3°N93.2°W1982年)在1982—1983年冬使我国日本和夏威夷的Q值分别下降20%左右。

19916月菲律宾Pinatubo火山爆发是近80年来最强的一次。图8·9给出这次爆发后其气溶胶光学厚度对1989—1990年平均值的距平。从图上可以看出,在热带(20°S—30°N)在火山爆发后3个月后气溶胶厚度达到峰值,直到19935月(亦即约两年后)恢复到正常。南北半球中纬度(40°—80°N40°—60°S)气溶胶光学厚度的峰值出现较晚,但均在春夏之际。显然,气溶胶光学厚度增大,太阳辐射削弱的程度亦增大。有资料证明19924—10月北半球两个大陆气温距平在—0.5——1.0℃之间。由图8·4可见19901991年曾经是近百年来最暖的两年,但1992年全球平均下降了0.2℃,北半球下降0.4℃。不少学者认为,这主要是Pinatubo爆发的影响。

 

火山爆发呈现着周期性的变化,历史上寒冷时期往往同火山爆发次数多、强度大的活跃时期有关。Baldwin等(1976)指出,火山活动的加强可能是小冰期以至最近一次大冰期出现的重要原因。Bray1977)则指出,过去200万年间几乎每次冰期的建立和急剧变冷都和大规模火山爆发有关。例如在1912年以前的150年,北半球火山爆发较频,所以气候相对地比较寒冷。1912年以后至20世纪40年代北半球火山活动很少,大气混浊度减小,可以吸收更多的太阳辐射,因此气温增高,形成一温暖时期。

总之,火山活动的这种阳伞效应是影响地球上各种空间尺度范围为时数年以上气候变化的重要因子。

(三)太阳活动的变化

太阳黑子活动具有大约11年的周期。据19781116日到1981713日雨云7号卫星(装有空腔辐射仪)共971天的观测,证明太阳黑子峰值时太阳常数减少。最近富卡尔、马利安(Fonkaland Lean1986)的研究指出,太阳黑子使太阳辐射下降只是一个短期行为,但太阳光斑可使太阳辐射增强。太阳活动增强,不仅太阳黑子增加,太阳光斑也增加。光斑增加所造成的太阳辐射增强,抵消掉因黑子增加而造成的削弱还有余。因此,在11年周期太阳活动增强时,太阳辐射也增强,即从长期变化来看太阳辐射与太阳活动为正相关(图略)。

据最新研究,太阳常数可能变化在1—2%左右。模拟试验证明,太阳常数增加2%,地面气温可能上升3℃,但减少2%,地面气温可能下降4.3℃。我国近500年来的寒冷时期正好处于太阳活动的低水平阶段,其中三次冷期对应着太阳活动的不活跃期。如第一次冷期(1470—1520年)对应着1460—1550年的斯波勒极小期;第二次冷期(1650—1700年)对应着1645—1715年的蒙德尔极小期;第三次冷期(1840—1890年)较弱,也对应着19世纪后半期的一次较弱的太阳活动期。而在中世纪太阳活动极大期间(1100—1250)正值我国元初的温暖时期,说明我国近千年来的气候变化与太阳活动的长期变化也有一定联系。

 

 

 

[设本页为书签]